

Division of Strength of Materials and Structures

Faculty of Power and Aeronautical Engineering

Finite element method (FEM1)

Lecture 11A. 3D Frame element

05.2025

Transformation of degrees of freedom from the global coordinate system (x, y, z) to local coordinate system (ξ, η, ζ)

 $c\gamma = \cos\gamma$

Stretching dependent on $[q_1, q_7]$ degrees of freedom

$$[k_{S}] = \begin{bmatrix} \frac{GJ_{s}}{l} & \frac{-GJ_{s}}{l} \\ \frac{-GJ_{s}}{l} & \frac{GJ_{s}}{l} \end{bmatrix}$$

Twisting dependent on $[q_4, q_{10}]$ degrees of freedom

Frame stiffness matrix components

Bending about η axis dependent on $[q_3, q_5, q_9, q_{11}]$ degrees of freedom

Bending about ζ axis dependent on $[q_2, q_6, q_8, q_{12}]$ degrees of freedom

Elastic strain energy of the frame element

Elastic strain energy of an element:

$$U_{e} = \frac{1}{2} \lfloor q \rfloor_{e} [k]_{e} \{q\}_{e} = \frac{1}{2} \lfloor q_{g} \rfloor_{e} [T_{r}]^{T} [k]_{e} [T_{r}] \{q_{g}\}_{e},$$
$$U_{e} = \frac{1}{2} \lfloor q_{g} \rfloor_{e} [k^{g}]_{e} \{q_{g}\}_{e},$$

Element stiffness matrix:

$$\left[k^{g}\right]_{e} = \left[T_{r}\right]^{T} \left[k\right]_{e} \left[T_{r}\right]$$

3D Frame element stiffness matrix in local coordinate system (ξ, η, ζ)

LOCAL PARAMETERS IN THE COORDINATE SYSTEM 523 $\lfloor q_{1} \rfloor_{e} = \lfloor q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}, q_{8}, q_{9}, q_{10}, q_{11}, q_{12} \rfloor$ $I \times 12$

Local parameters in the coordinate system xyz $[9_{9}]_{e} = [u_{1}, v_{1}, w_{1}, \alpha_{1}, \beta_{1}, \beta_{1}, \eta_{2}, v_{2}, w_{2}, \alpha_{2}, \beta_{2}, \beta_{2}]$ 1×12

 $U_e = \frac{4}{2} L_{\gamma} L_e \left[k \right]_e \left[q \right]_e$ $1 \times 12 \quad 12 \times 12 \quad 12 \times 12$ where:

-												
	a						-a					
		b		d				-b		d		
			с		е				-c		е	
		d		2r				-d		r		
			е		2s				-e		S	
						t						-t
	-a						a					
		-b		-d				b		-d		
			-c		-e				с		-e	
		d		r				-d		2r		
			е		s				-e		2s	
						-t						t

 $[k]_e =$

 $\begin{aligned} & \mathcal{Q} = \frac{EA}{L}, \quad b = \frac{12EJ_3}{le^3}, \quad c = \frac{12EJ_2}{le^3}, \quad d = \frac{6EJ_3}{le^2}, \\ & \mathcal{C} = \frac{6EJ_2}{le^2}, \quad r = \frac{2EJ_3}{le}, \quad s = \frac{2EJ_2}{le}, \quad t = \frac{G\cdot J_0}{le}. \end{aligned}$

[kg] 12×12

EXAMPLE: BUILD A FE MODEL USING 3D FRAME ELEMENTS. FIND UNKNOWN DISPLACEMENTS, STRESSES AND REACTIONS.

Global parameters in the coordinate system xyz 32 $\left[\mathcal{U}_{1}, \mathcal{V}_{1}, \mathcal{W}_{1}, \mathcal{O}_{1}, \beta_{1}, \beta_{1}, \mathcal{U}_{2}, \mathcal{V}_{2}, \mathcal{W}_{2}, \mathcal{V}_{2}, \beta_{2}, \beta_{2}, \mathcal{U}_{3}, \mathcal{V}_{3}, \mathcal{W}_{3}, \mathcal{O}_{3}, \beta_{3}, \beta_{3}, \beta_{3} \right]$ L9/1 1×18

Global load vector

 $[F] = [R_1, R_2, R_3, M_{\text{EX}}, M_{\text{KY}}, N_{\text{EZ}}, 0,0,0,0,0,0,0,-F,0,0,-M,0]$ 1×18

ELEMENT
$$[\underline{1}]:$$

$$\begin{bmatrix} (q_{1})_{q} = \lfloor q_{1}(q_{2}(q_{3}, q_{4}, q_{5}, q_{6}, q_{7}, q_{8}, q_{3}, q_{10}, q_{11}, q_{12} \rfloor \\ [q_{1} \times q_{2} \end{bmatrix} = \lfloor u_{1} \mid v_{1}(w_{1}) \mid v_{1}(\beta_{1}, \beta_{1}, \beta_{1}, q_{2}, v_{2}, w_{2}, v_{2}, \beta_{2}, \beta_{2} \rfloor \\ [q_{1} = u_{1}, q_{2} = v_{1}, q_{3} = w_{1}, q_{4} = g_{4}, q_{5} = -\beta_{1}, q_{6} = \omega_{1} \\ q_{1} = u_{2}, q_{8} = v_{2}, q_{3} = w_{2}, q_{10} = g_{2}, q_{11} = -\beta_{2}, q_{12} = \alpha_{2} \\ q_{6} = q_{4} \\ q_{3} = q_{5} \\ q_{5} = q_{5} \\ q_{9} = q_{90} \\ q_{9} = q_{90} \\ q_{9} = q_{90} \\ q_{9} = q_{10} \\ q_{1} = q_{1} \\ q_{1} = q_{1} \\ q_{2} = q_{10} \\ q_{1} = q_{1} \\ q_{2} = q_{1} \\ q_{2} = q_{1} \\ q_{3} = q_{1} \\ q_{4} \\ q_{5} = q_{5} \\ q_{6} \\ q_{1} \\ q_{1} \\ q_{1} \\ q_{2} \\ q_{3} \\ q_{5} \\ q_{5} \\ q_{5} \\ q_{5} \\ q_{1} \\ q_{1} \\ q_{1} \\ q_{2} \\ q_{1} \\ q_{2} \\ q_{1} \\ q_{2} \\ q_{1} \\ q_{2} \\ q_{3} \\ q_{1} \\ q_{1} \\ q_{2} \\ q_{1} \\ q_{2} \\ q_{3} \\ q_{1} \\ q_{2} \\ q_{1} \\ q_{2} \\ q_{3} \\ q_{1} \\ q_{1} \\ q_{2} \\ q_{3} \\ q_{1} \\ q_{1} \\ q_{1} \\ q_{2} \\ q_{2} \\ q_{1} \\ q_{2} \\ q_{2} \\ q_{1} \\ q_{2} \\ q_{1} \\ q_{2} \\ q_{2} \\ q_{2} \\ q_{2} \\ q_{1} \\ q_{2} \\ q_{2} \\ q_{2} \\ q_{2} \\ q_{1} \\ q_{2} \\ q_{2} \\ q_{1} \\ q_{2} \\ q_{2} \\ q_{2} \\ q_{2} \\ q_{1} \\ q_{2} \\ q_{2} \\ q_{2} \\ q_{1} \\ q_{2} \\ q_{2} \\ q_{2} \\ q_{1} \\ q_{2} \\ q_{2} \\ q_{2} \\ q_{2} \\ q_{1} \\ q_{2} \\ q_{2} \\ q_{2} \\ q_{2} \\ q_{2} \\ q_{2} \\ q_{3} \\ q_{4} \\ q_$$

 $= \left[T_{f} \right]_{1} \cdot \left\{ q_{g} \right\}$ $\{q_{j_1}^2\}$ 12×12 12×1 12×1 0 C С 0 1 0 1 0 0 0 0 0 1 Q 0⁄ O C 0 $\begin{bmatrix} T_f \end{bmatrix}^T$ C 1 6×L =' 0 [Tf $\bigcirc 0$ Ξ O-1 0 0 0 \mathcal{O} 0 12×12 \mathcal{O} \mathcal{O} 1 0 \mathcal{O} 0 0 0 1 \mathbf{O} Ċ С 0 0 1 \mathcal{O} 0 0 01 O \mathcal{O} С 0 1 0⁄ \Diamond 0⁄ 6×6 -1 О 0 0⁄ 0 \mathcal{O} 0 1 \bigcirc 0 \mathcal{O}

$$\begin{bmatrix} k_{g} \\ 1_{2\times 12} \end{bmatrix} = \begin{bmatrix} T_{f} \\ 1_{2\times 12} \end{bmatrix}^{T} \cdot \begin{bmatrix} k \\ 1_{2\times 12} \end{bmatrix} \cdot \begin{bmatrix} T_{f} \\ 1_{2\times 12} \end{bmatrix}^{T} \\ 1_{2\times 12} \end{bmatrix} \cdot \begin{bmatrix} T_{f} \\$$

 $J_{31} = J_{n_1} = \frac{\pi}{64} \left(d_0^7 - (d_0^2 - 2t)^7 \right) , \quad J_{01} = 2 \cdot J_{31}$

ELEMENT 2 $\lfloor 9/ 1_2 = \lfloor 9/1, 9/2, 9/3, 9/4, 9/5, 9/6, 9/7, 9/8, 9/9, 9/10, 9/11, 9/12 \rfloor$ $L_{99} J_2 = [u_2, v_2, w_2, w_2, w_2, \beta_2, \beta_2, \mu_3, v_3, w_3, w_3, \omega_3, \beta_3, \beta_3]$ $q_1 = -W_2$, $q_2 = V_2$, $q_3 = U_2$, $q_4 = V_2$, $q_5 = -\beta_2$, $q_6 = -\delta_2$ $q_{17} = -W_3$, $q_{18} = V_3$, $q_{19} = W_3$, $q_{10} = \infty_3$, $q_{11} = -\beta_3$, $q_{12} = -\delta_3$ 910 977 22 1911 99 di qn. 912 Uz B3 96 α, 32 42 B2 W2

$$\begin{cases} q_{1}^{2} = \left[T_{f} \right]_{2} \cdot \left[q_{2} \right]_{2} \\ q_{2\times 1} & q_{$$

 $\begin{bmatrix} k_{g} \end{bmatrix}_{2} = \begin{bmatrix} T_{f} \end{bmatrix}^{T} \cdot \begin{bmatrix} l_{c} \end{bmatrix}_{2} \cdot \begin{bmatrix} T_{f} \end{bmatrix}_{2}$ $12 \times 12 \quad 12 \times 12 \quad 12 \times 12 \quad 12 \times 12$ $\alpha_2 = \frac{EA_2}{l_2}$, $b_2 = \frac{12EJ_{32}}{l_1^3}$, $c_2 = \frac{12EJ_{12}}{l_3^3}$, $d_2 = \frac{6EJ_{32}}{l_2^2}$ $e_{z} = \frac{6 E J \eta_{z}}{l_{z}^{2}}, r_{z} = \frac{2 E J J_{z}}{l_{z}}, s_{z} = \frac{2 E J \eta_{z}}{l_{z}}, t_{z} = \frac{G \cdot J \sigma_{z}}{L}$ $J_{32} = \frac{hb^3}{12}, J_{22} = \frac{bh^3}{12}, J_{02} = 0.457 bh^3$ $A_2 = b \cdot h$ $[k_g]_2^* = [0] [0]$ $\frac{[0]}{6 \times 6} \frac{[0]}{6 \times 12}$ $18 \times 18 \frac{[0]}{12 \times 6} [k_g]_2$

 $\left[\mathsf{K}\right] = \left[\mathsf{K}_{g}\right]_{1}^{*} + \left[\mathsf{K}_{g}\right]_{2}^{*}$ 18×18 18×18 18×18 0

5-5

 $[K] \cdot \{q\} = \{F\}$ 18×18 18×1 18×1 $w_n = 0, \ w_n = 0, \ w_n = 0$ $1 = 0, \beta_1 = 0, \gamma_1 = 0$ $[K] \cdot \{q\} = \{F\} = \} \quad \{q\} = [K]^{-1} \cdot \{F\}$ $12 \times 12 \quad 12 \times 1 \quad 12 \times 1 \quad 12 \times 1 \quad 12 \times 12 \quad 12 \times 12$ $[K] \cdot \{q_{i}\} = \{F_{i}\} = > REACTIONS$ 18×18 18×1 18×1

SOLUTION DOF 0 0 mm Uz \times (3) $-11.94 \, \text{mm}$ V2 Ð WZ 14.93 mm -0.0243 red dz -0.0249 red BZ 2q-0.015 rad 82 12×1 29.07 mm U3 -31.43mm V3 W3 14.93 mm W \propto_3 -0.0269 rad B3 -0.0527 rad _-0.015 rad ŇЗ

AXIAL BAR: (9,1,9,7)i $\mathcal{E}_{z_i} = \frac{(q_i - q_i)_i}{1}, \quad \mathcal{O}_{z_i} = E \cdot \mathcal{E}_{z_i}, \quad N_i = \mathcal{O}_{z_i} A_i$ BEAM : I) BENDING IN (32); PLANE: (92,94,98,910); $V_{i}(\mathfrak{F}_{i}) = \lfloor N(\mathfrak{F}_{i}) \rfloor \cdot \begin{cases} q_{2} \\ q_{4} \\ q_{8} \end{cases}$ $M_{3i}(\underline{z}_{i}) = E \cdot J_{3i} \cdot \bigvee_{i}^{"}(\underline{z}_{i}) = \begin{cases} q_{2} \\ q_{4} \\ q_{6} \\ q_{7} \\ q_{7$

29

$$\begin{aligned} \mathbf{f}_{\mathbf{z}i}^{\mathbf{I}} &= -\frac{\mathsf{M}_{\mathbf{z}i}(\mathbf{z}i) \cdot \mathbf{p}i}{\mathbf{J}_{\mathbf{z}i}} \\ \mathsf{T}_{\mathbf{p}i}(\mathbf{z}i) &= -\mathsf{E} \mathsf{J}_{\mathbf{z}i} \cdot \mathsf{V}_{i}^{\mathsf{II}}(\mathbf{z}i) = \\ &= -\mathsf{E} \mathsf{J}_{\mathbf{z}i} \cdot \left[\mathsf{N}^{\mathsf{III}}\right] \cdot \left\{ \begin{array}{c} \mathbf{q}_{\mathbf{z}} \\ \mathbf{q}_{\mathbf{q}} \\ \mathbf{q}_{\mathbf{q}} \\ \mathbf{q}_{\mathbf{z}} \end{array} \right\} = \mathsf{court} \\ &= \mathsf{court} \\ &= \mathsf{shear stress caused by T}_{\mathbf{p}i}(\mathbf{z}i) \text{ is meglected}. \end{aligned}$$

$$\begin{aligned} \mathbf{f}_{\mathbf{z}_{i}}^{\mathbf{II}} &= -\frac{\mathsf{Mgi}(\underline{z}_{i}) \cdot \underline{z}_{i}}{\mathsf{Jgi}} \\ \mathbf{T}_{\mathbf{z}_{i}}(\underline{z}_{i}) &= -\mathsf{E} \mathsf{Jgi} \cdot \mathsf{W}_{i}^{\mathsf{III}}(\underline{z}_{i}) = \\ &= -\mathsf{E} \mathsf{Jgi} \left[\mathsf{N}_{\mathsf{N}_{i}}^{\mathsf{III}} \right] \cdot \left\{ \begin{array}{c} q_{i} \\ q_{i} \\$$

$$\frac{\text{TORSION BAR}}{\varphi_{i}(\Xi_{i})} = \left[N(\Xi_{i}) \right] \cdot \begin{cases} q_{6} | q_{12} \rangle_{i} \\ q_{6} \rangle_{i} \\ q_{2} \rangle_{i} \end{cases} = \left[1 - \frac{\Xi_{i}}{U_{i}} \right] \cdot \begin{cases} q_{6} \rangle_{i} \\ q_{12} \rangle_{i} \\ q_{12} \rangle_{i} \end{cases} = \left[1 - \frac{\Xi_{i}}{U_{i}} \right] \cdot \begin{cases} q_{6} \rangle_{i} \\ q_{12} \rangle_{i} \\ q_{12} \rangle_{i} \end{cases} = \left(q_{6} \rangle_{i} + \frac{(q_{12} - q_{6})_{i}}{U_{i}} \right) \cdot \Xi_{i}$$

$$\begin{cases} q_{\mathcal{S}} \\ q_{\mathcal{I}2} \\ q_{\mathcal{I}2} \\ z \end{cases} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases}$$

ELEMENT 1 :

$$\begin{split} \tilde{U}_{1}(r) &= G \cdot y_{1}(r) = \frac{E}{2(1+\nu)} \cdot \frac{d \psi_{1}(\underline{s}_{1})}{d\underline{s}_{1}} \cdot r = \\ &= \frac{E}{2(1+\nu)} \cdot \left[-\frac{1}{L_{1}}, \frac{1}{L_{1}} \right] \cdot \begin{cases} q_{6} \\ q_{12} \\ q_{12} \\ 1 \end{cases} \cdot r = \\ &= \frac{E \left(q_{12} - q_{6} \right)_{1}}{2(1+\nu) L_{1}} \cdot r \quad 12 \quad p(q_{6})_{1} = C \end{split}$$

$$\overline{l}_{1 \max} = \overline{l}_{1} \left(\frac{d_{0}}{2} \right) = \frac{E \cdot (q_{12})_{1} d_{0}}{4(1+\nu) l_{1}} = \frac{E d_{0} \propto_{2}}{4(1+\nu) l_{1}}$$

$$M_{s_{1}} = \frac{T_{1}(r) \cdot J_{01}}{r} = \frac{E \cdot (q_{12})_{1} \cdot J_{01}}{2(1+\nu) l_{1}} = \frac{E \propto_{2} J_{01}}{2(1+\nu) l_{1}} = count$$

121

Ο

31

r

ELEMENT 2:

$$\Rightarrow \frac{d \varphi_2(\xi_2)}{d\xi_2} = 0 \Rightarrow \tilde{U}_2 = 0$$
$$M_{s_2} = 0$$

 $\frac{f}{31}$ $\frac{f}{1}$ $\frac{f$

NORMAL FORCES :

ELEMENT RESULTS

$$V_1 = 0 \quad | \quad N_2 = 0$$

SHEAR FORCES :

$$T_{21} = -F$$
, $T_{22} = -F$
 $T_{31} = 0$, $T_{32} = 0$

POINT OF THE HIGHEST STRESS :

NORMAL STRESS DUE TO BENDING :

-

$$G_{MAXB} = G_{\xi_1}^{I} + G_{\xi_1}^{II} =$$

$$= -\frac{M_{31}(0) \cdot n}{J_{31}} - \frac{M_{n}(0) \cdot 31}{J_{n}} = 161.9 \text{ MPa}$$

SHEAR STRESS

$$T_{4 \text{ max}} = \frac{\text{Edo}(2)}{4(1+\nu)} = -38.86 \text{ MPa}$$
MAXIMUM EQUIVALENT STRESS :

$$G_{EQV} = \sqrt{6} \frac{2}{6_{HAKB}} + 37 \frac{2}{4 \text{ max}} = 175.34 \text{ MPa}$$

Two-element model (Ansys)

Two-element model (Ansys) - Von Mises stress (SEQV)

